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1 Faculty of Physics, Warsaw University of Technology, ulica Koszykowa 75, 00-662 Warszawa,
Poland
2 Department of Physics, Adam Mickiewicz University, ulica Umultowska 85, 61-614 Poznań,
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Abstract
Nonequilibrium electronic transport through a quantum dot coupled to
ferromagnetic leads (electrodes) is studied theoretically by the nonequilibrium
Green function technique. The system is described by the Anderson model with
arbitrary correlation parameter U . Exchange interaction between the dot and
ferromagnetic electrodes is taken into account via an effective molecular field.
The following situations are analysed numerically: (i) the dot is symmetrically
coupled to two ferromagnetic leads, (ii) one of the two ferromagnetic leads is
half-metallic with almost total spin polarization of electron states at the Fermi
level, and (iii) one of the two electrodes is nonmagnetic whereas the other one
is ferromagnetic. Generally, the Kondo peak in the density of states (DOS)
becomes spin-split when the total exchange field acting on the dot is nonzero.
The spin-splitting of the Kondo peak in DOS leads to splitting and suppression
of the corresponding zero-bias anomaly in the differential conductance.

1. Introduction

The Kondo phenomenon in electronic transport through artificial quantum dots (QDs) or
single molecules attached to nonmagnetic leads was predicted theoretically more than a
decade ago [1]. Owing to recent progress in nanotechnology, the phenomenon has been also
observed experimentally [2, 3]. Several theoretical techniques have been developed to describe
this effect [4–11]. The description is usually simpler in the linear response regime, where
equilibrium methods can be applied, but it becomes more complex when the system is driven
out of equilibrium by an external bias voltage [7, 11–15]. One of the methods used to describe
the nonequilibrium Kondo effect is the nonequilibrium Green function technique [5, 16, 17]. To
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calculate the density of states (DOS) and electric current one then needs the retarded/advanced
as well as the lesser (correlation) Green functions. These can be derived within some
approximation schemes.

It has been shown recently that the Kondo effect can also occur when replacing
nonmagnetic leads by ferromagnetic ones [18–22], but ferromagnetism of the electrodes
generally suppresses the effect—either partially or totally [19, 22]. However, in some peculiar
situations the effect remains almost unchanged. Suppression of the Kondo anomaly is a
consequence of an effective exchange field due to coupling between the dot and ferromagnetic
electrodes. The exchange field gives rise to spin-splitting of the equilibrium Kondo peak in the
DOS, and the two components of the split peak move away from the Fermi level, which leads
to suppression of the Kondo anomaly in the electrical conductance—similarly as an external
magnetic field suppresses the effect in nonmagnetic systems. Such a suppression was studied
recently by the Green function technique in the limit of the infinite correlation parameter
U [19], and was also confirmed by numerical renormalization group calculations [23, 24].
However, only QDs symmetrically coupled to two magnetic leads have been studied up to now.
The Kondo anomaly survives then in the antiparallel magnetic configuration and is significantly
suppressed in the parallel one. Recent experimental observations on C60 molecules attached to
ferromagnetic (Ni) electrodes support these general theoretical predictions [25].

Some features of the nonequilibrium Kondo phenomenon in QDs coupled to ferromagnetic
leads have not been addressed yet. Therefore, in this paper we consider a more general
situation. First of all, we consider the case when the two ferromagnetic electrodes are generally
different. In other words, the dot is (spin-)asymmetrically coupled to the ferromagnetic leads.
This leads to qualitatively new results. Second, we consider the case of arbitrary U instead of
the limiting situation of infinite U studied in [19]. Third, we introduce an effective exchange
field to describe the dot level renormalization.

We analyse in detail three different situations. In the first case the dot is coupled to two
ferromagnetic leads, and the coupling is fully symmetric in the parallel magnetic configuration.
We show that the equilibrium Kondo peak in the DOS is then spin-split in the parallel
configuration, whereas no splitting appears in the antiparallel one. The splitting, however, is
significantly reduced for small values of the correlation parameter U . The corresponding zero-
bias anomaly in the conductance becomes split in the parallel configuration as well [19]. The
second situation studied in this paper is the one with asymmetric coupling to two ferromagnetic
leads. As a particular case we consider the situation when one of the ferromagnetic electrodes
is half-metallic, with almost total spin polarization of electron states at the Fermi level. Such
structures have been shown recently to have transport characteristics with typical diode-like
behaviour [26, 27]. Finally, we also analyse the case when one of the electrodes is nonmagnetic
whereas the second one is ferromagnetic, and show that one ferromagnetic electrode is
sufficient to generate spin-splitting of the Kondo anomaly.

The paper is organized as follows. The model and method are briefly described in
sections 2 and 3, respectively. Numerical results for the three different situations mentioned
above are presented and discussed in section 4. A summary and general conclusions are given
in section 5.

2. Model

We consider a single-level QD coupled to ferromagnetic metallic leads (electrodes) by
tunnelling barriers. We restrict our considerations to collinear (parallel and antiparallel)
magnetic configurations and assume that the axis z (spin quantization axis) points in the
direction of the net spin of the left electrode (opposite to the corresponding magnetic moment).
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Antiparallel alignment is obtained by reversing magnetic moment of the right electrode. The
whole system is then described by a Hamiltonian of the general form

H = HL + HR + HD + HT. (1)

The terms Hβ describe here the left (β = L) and right (β = R) electrodes in the noninteracting
quasiparticle approximation, Hβ = ∑

kσ εkβσ c†
kβσ ckβσ , where εkβσ is the single-electron energy

in the electrode β for the wavenumber k and spin σ (σ = ↑,↓), whereas c†
kβσ and ckβσ are the

corresponding creation and annihilation operators. The single-particle energy εkβσ includes the
electrostatic energy due to applied voltage, εkβσ = ε0

kβσ + eUβ
e = ε0

kβσ + µβ , where ε0
kβσ is

the corresponding energy in the unbiased system, Uβ
e is the electrostatic potential of the βth

electrode, e stands for the electron charge (e < 0), and µβ is the chemical potential of the
βth electrode (the energy is measured from the Fermi level of unbiased system). The electron
spin projection on the global quantization axis is denoted as ↑ for sz = 1/2 and ↓ and for
sz = −1/2. On the other hand, the spin projection on the local quantization axis (local spin
polarization in the ferromagnetic material) will be denoted as + for spin-majority and − for
spin-minority electrons, respectively. When local and global quantization axes coincide, then
↑ is equivalent to + and ↓ is equivalent to −. (Note that the local quantization axis in the
ferromagnet is opposite to the local magnetization.)

The term HD in equation (1) describes the quantum dot and takes the form

HD =
∑

σ

εσ d†
σ dσ + Ud†

↑d↑d†
↓d↓, (2)

where εσ denotes the energy of the dot level (spin-dependent in a general case), U denotes the
electron correlation parameter, whereas d†

σ and dσ are the creation and annihilation operators
for electrons on the dot. The level energy εσ includes the electrostatic energy due to applied
voltage, εσ = ε0σ + eU d

e , where U d
e is the electrostatic potential of the dot, and ε0σ is the level

energy at zero bias.
The electrostatic potential U d

e of the dot will be determined fully self-consistently from the
following capacitance model [28, 29]:

e

(
∑

σ

nσ −
∑

σ

n0σ

)

= CL(U d
e − U L

e ) + CR(U d
e − U R

e ), (3)

where nσ and n0σ are the dot occupation numbers 〈d+
σ dσ 〉 calculated for a given bias and for

zero bias, respectively, whereas CL and CR denote the capacitances of the left and right tunnel
junctions. Self-consistent determination of the dot electrostatic potential makes the description
gauge invariant. This is particularly important for strongly asymmetric systems.

The last term, HT, in equation (1) describes tunnelling processes between the dot and
electrodes and is of the form

HT =
∑

kβσ

V ∗
kβσ c†

kβσ dσ + h.c., (4)

where Vkβσ are the components of the tunnelling matrix, and H.c. stands for the Hermitian
conjugate term. The Hamiltonian (4) includes only spin-conserving tunnelling processes.

3. Theoretical formulation

The electric current flowing from the βth lead to the quantum dot in a nonequilibrium situation
is determined by the retarded (advanced) Gr(a)

σ and correlation (lesser) G<
σ Green functions of
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the dot (calculated in the presence of coupling to the electrodes), and is given by the formula
[30]

I β
σ = ie

h̄

∫
dE

2π
�β

σ (E){G<
σ (E) + fβ(E)[Gr

σ (E) − Ga
σ (E)]}, (5)

where fβ(E) is the Fermi distribution function for the βth electrode. The retarded (advanced)
Green functions can be calculated from the corresponding equation of motion. The key
difficulty is with calculating the lesser Green function G<

σ (E).
In the following we assume constant (independent of energy) coupling parameters,

�β
σ (E) = 2π

∑
k Vkβσ V ∗

kβσ δ(E −εkβσ ) = �β
σ . As pointed out in [33, 34], it is then sufficient to

determine
∫
(dE/2π) G<

σ (E), while knowledge of the exact form of G<
σ (E) is not necessary.

The current conservation condition allows us then to express the above integral by an integral
including retarded and advanced Green functions only, which in turn allows us to rewrite the
current formula in the commonly used form,

Iσ = ie

h̄

∫
dE

2π

�L
σ �R

σ

�L
σ + �R

σ

[Gr
σ (E) − Ga

σ (E)][ fL(E) − fR(E)]. (6)

Similarly, the occupation numbers, nσ = 〈d†
σ dσ 〉, are then given by the formula

nσ = −i
∫

dE

2π
G<

σ (E) = i
∫

dE

2π

�L
σ fL(E) + �R

σ fR(E)

�L
σ + �R

σ

[Gr
σ (E) − Ga

σ (E)]. (7)

In the following the parameters �β
σ will be used to parameterize the strength of the coupling

between the dot and leads. It is convenient to introduce the spin polarization factors pβ defined
as pβ = (�

β
+ − �

β
−)/(�

β
+ + �

β
−), where �

β
+ and �

β
− are the coupling parameters for spin-

majority and spin-minority electrons in the lead β , respectively. Accordingly, one may write
�

β
+ = (1 + pβ)�β and �

β
− = (1 − pβ)�β , with �β = (�

β
+ + �

β
−)/2.

The retarded (advanced) Green function Gr(a)
σ of the dot can be calculated only

approximately, for instance by the equation of motion method. In the approximations
introduced by Meir et al [5] one finds

Gr
σ (E) = E − εσ − U(1 − n−σ )

[E − εσ − �r
σ (E)](E − εσ − U) − Un−σ �r

σ (E)
, (8)

where �r
σ is the corresponding self energy,

�r
σ (E) = �r

0σ (E) + U
(E − εσ )n−σ �r

03σ (E) − L0σ �r
01σ (E)

L0σ (E)[L0σ (E) − �r
03σ (E)] , (9)

with L0σ = E − εσ − U(1 − n−σ ), and �r
01σ (E) and �r

03σ (E) defined as

�r
01σ (E) = n−σ �r

0σ (E) + �r
1σ (E), (10)

�r
03σ (E) = �r

0σ (E) + �r
3σ (E). (11)

The self-energies �r
0σ (E), �r

1σ (E), and �r
3σ (E) are defined as

�r
0σ (E) =

∑

β=L,R

�
βr
0σ (E) =

∑

β=L,R

∑

k

∣
∣Vkβσ

∣
∣2 1

E − εkβσ + i0+

=
∑

β=L R

∫
dε

2π

�β
σ

E − ε
− i

�β
σ

2
(12)

and

�r
iσ (E) =

∑

β=L R

∫
dε

2π
Ai�

β
−σ

[
1

ε + E − ε−σ − εσ − U − ih̄/τ−σ

− 1

ε − E − ε−σ + εσ − ih̄/τ−σ

]

, (13)
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(for i = 1, 3), where A1 = f (ε), A3 = 1, and τ−σ is the relaxation time of the intermediate
states [5]. This relaxation time is spin dependent and in the low-temperature limit is given by
the formula [5]

1

τσ

= 1

2π h̄

∑

β,β ′

∑

σ ′
�β

σ �
β ′
σ ′ 
(µβ ′ − µβ + εσ − εσ ′)

µβ ′ − µβ + εσ − εσ ′

(µβ − εσ )(µβ ′ − εσ ′)
, (14)

where 
(x) = 0 for x < 0 and 
(x) = 1 otherwise.
In the limit of infinite U the Green function (8) reduces to the well known form,

Gr
σ (E) = 1 − n−σ

E − εσ − �r
0σ (E) − �r

1σ (E)
, (15)

where �r
0σ (E) is given by equation (12) and �r

1σ (E) by

�r
1σ (E) =

∑

β=L,R

�
βr
1σ (E) ≡

∑

β=L,R

∫
dε

2π

fβ(ε)�
β
−σ

−ε + E + ε−σ − εσ + ih̄/τ−σ

, (16)

with τσ defined by equation (14).
The above-derived Green functions are sufficient to describe qualitatively basic features

of the Kondo phenomenon in QDs attached to nonmagnetic leads [5]. However, they are not
sufficient to describe the Kondo phenomenon correctly when the quantum dot is attached to
ferromagnetic leads. The key feature of the system which is not properly described is the
splitting of the dot level due to spin-dependent tunnelling processes [19]. In this paper we take
into account the level splitting by replacing the bare energy levels with the renormalized ones
in a self-consistent way. The main contribution to the level renormalization comes from the
self-energy �r

1σ (E) and is given by �εσ = �r
1σ (E = εσ ). This renormalization allows us to

introduce the effective exchange field gµB Bex = �ε↑ − �ε↓. Thus, on taking into account
equation (13), the exchange field Bex can be expressed by the formula

Bex = 1

gµB

∑

β=R,L

Re
∫

dε

2π
fβ(ε)

[

�
β

↑

(
1

ε − ε↑ − ih̄/τ↑
− 1

ε − ε↑ − U − ih̄/τ↑

)

− �
β

↓

(
1

ε − ε↓ − ih̄/τ↓
− 1

ε − ε↓ − U − ih̄/τ↓

)]

. (17)

When the bare dot level and spin relaxation time are independent of the spin orientation,
ε↑ = ε↓ = ε and τ↑ = τ↓ = τ , formula (17) acquires the form [35]

Bex = 1

gµB

∑

β=R,L

Re
∫

dε

2π
fβ(ε)

(
�

β

↑ − �
β

↓
)(

1

ε − ε − ih̄/τ
− 1

ε − ε − U − ih̄/τ

)

. (18)

The above description is self-consistent and takes into account the main features following
from ferromagnetism of the electrodes. These features are described here effectively by the
exchange field Bex. We also want to emphasize that the results obtained within such an
approach are in agreement with the relevant experimental data [25]. Moreover, the results
are also consistent with those obtained recently by a real time diagrammatic technique [36].

4. Numerical results

Now, we apply the above described formalism to the Kondo problem in a QD coupled to
ferromagnetic leads. In the numerical calculations described below the energy is measured in
the units of D, where D = D̄/50 and D̄ is the electron band width. For simplicity, the electron
band in the leads is assumed to be independent of the spin orientation and extends from −25D
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below the Fermi level (bottom band edge) up to 25D above the Fermi level (top band edge).
The energy integrals will be cut off at E = ±25D, i.e., will be limited to the electron band.
Thus, the influence of ferromagnetic electrodes is included only via the spin asymmetry of the
coupling parameters �L

σ and �R
σ . Apart from this, in all numerical calculations we assumed

kT/D = 0.001 and ε0↑/D = ε0↓/D = ε0/D = −0.35.
For positive (negative) bias we assume the electrostatic potential of the left (right) electrode

to be equal to zero. In other words, the electrochemical potential of the drain electrode is
assumed to be zero while of the source electrode is shifted up by |eV |. In the following the bias
is described by the corresponding electrostatic energy eV . Note that positive eV corresponds
to negative bias due to negative electron charge (e < 0).

4.1. QD coupled to two similar ferromagnetic leads

Consider first the situation when both electrodes are made of the same ferromagnetic metal,
and the coupling of the dot to both leads is symmetrical (in the parallel configuration). For
numerical calculations we assumed �L+/D = �R+/D = 0.12 for spin-majority electrons and
�L−/D = �R−/D = 0.08 for spin-minority ones, which corresponds to the spin polarization
factor pL = pR = p = 0.2, and �L/D = �R/D = 0.1.

It was shown in [19] that ferromagnetism of the electrodes leads to spin splitting of the
Kondo peak in the density of states (DOS) in the parallel configuration, whereas no splitting
occurs for the antiparallel orientation. Such a behaviour of the DOS has a significant influence
on the transport properties. First of all, the Kondo peak in the DOS leads to a zero-bias anomaly
in the differential conductance Gdiff = ∂ I/∂V . This anomaly is particularly interesting in the
parallel configuration, where the spin splitting of the Kondo peak in the DOS leads to splitting
of the differential conductance, as shown in figure 1(a) for four different values of the electrode
spin polarization factor p and for large U . For p = 0 there is only a single peak centred
at zero bias. When the polarization factor becomes nonzero, the peak becomes split into two
components located symmetrically on both sides of the original peak, with the corresponding
intensities significantly suppressed. The splitting of the Kondo anomaly increases with
increasing p. Moreover, the height of the two components of the Kondo anomaly decreases
with increasing p. On the other hand, in the antiparallel configuration there is no splitting of
the Kondo peak in the DOS and consequently also no splitting of the Kondo anomaly in the
differential conductance (see figure 1(b)). For all polarization values, the anomaly is similar
to that in the case of QDs coupled to nonmagnetic leads. However, the intensity of the Kondo
anomaly decreases with increasing polarization. The difference between the conductance in
the antiparallel and parallel configurations gives rise to the tunnel magnetoresistance (TMR)
effect which may be described quantitatively by the ratio (I P − I AP)/I AP, where I P and I AP

denote the current flowing through the system in the parallel and antiparallel configurations at
the same bias, respectively. The associated TMR effect is displayed in figure 1(c). One finds
negative values of the TMR ratio, which is a consequence of the spin-splitting of the Kondo
peak in the parallel configuration and the absence of such a splitting for antiparallel alignment.
It is worth noting that in the absence of the Kondo anomaly the TMR effect would be positive.

The Kondo anomaly in transport characteristics shown in figure 1 was calculated for the
limit of large U . In figure 2 we show similar characteristics as in figure 1, but for different
values of the correlation parameter U and a constant value of the polarization factor p. The
splitting of the Kondo anomaly in the parallel configuration and the intensity of the peaks
(figure 2(a)) decrease with decreasing U . In the antiparallel configuration there is no splitting
of the Kondo anomaly, but the intensity of the Kondo peak decreases with decreasing U .
The associated TMR effect is shown in figure 2(c). The effect is negative in a certain bias
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Figure 1. Bias dependence of the differential conductance in the parallel (a) and antiparallel
(b) configurations, and the corresponding TMR (c) for the indicated four values of the lead
polarization pL = pR = p (p = 0 corresponds to nonmagnetic leads so the corresponding TMR
vanishes and is not shown in part (c)). The parameters assumed for numerical calculations are:
kT/D = 0.001, �L/D = �R/D = 0.1, ε0↑/D = ε0↓/D = ε0/D = −0.35, U/D = 500, and
(e2/CL)/D = (e2/CR)/D = 0.33.

range around the zero-bias limit, but the absolute magnitude of the effect becomes smaller for
smaller values of U . For large bias there is a transition from negative to positive TMR with
decreasing U .

4.2. QD coupled to one ferromagnetic lead and one half-metallic lead

Assume now that one of the electrodes (say the left one) is made of a 3d ferromagnetic metal,
the second (right) one is half-metallic, and the total coupling to the latter electrode is much
smaller than to the former one. This is reflected in the spin asymmetry of the bare coupling
constants, for which we assume �L+/D = 0.28 and �L−/D = 0.12 for the left electrode,
and �R+/D = 0.04 and �R−/D = 0.0002 for the right one. These parameters correspond to
pL = 0.4, pR = 0.99, �L/D = 0.2, and �R/D ≈ 0.02. Thus, the spin asymmetry of the
coupling to the right electrode is much larger than to the left one. In figure 3 we show the DOS
in the parallel (left column) and antiparallel (right column) magnetic configurations, calculated
for vanishing as well as for positive and negative bias voltages. Consider now the main features
of the spectra in more details, and let us begin with the parallel configuration (left column in
figure 3).

At V = 0 the Kondo peak in the DOS is spin-split, and the intensity of the spin-down
peak is relatively large, whereas that of the spin-up peak is much smaller. The asymmetry
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Figure 2. Bias dependence of differential conductance in the parallel (a) and antiparallel (b)
configurations, and the corresponding TMR (c) calculated for indicated values of the correlation
parameter U and for p = 0.2. The other parameters are as in figure 1.

in peak intensities is a consequence of the spin asymmetry in the coupling of the dot to
metallic electrodes—this coupling is larger for a spin-up electron, which determines the height
of the Kondo peak for spin-down electrons. When a bias voltage is applied, each of the two
Kondo peaks generally becomes additionally split into two components. One of them (the one
associated with the coupling to the source electrode) moves up in energy, whereas the position
of the second one (the one associated with the drain electrode) remains unchanged. This is
because we assumed that the electrochemical potential of the source electrode shifts up by |eV |,
while that of the drain electrode is independent of the voltage. For eV > 0 (negative bias), the
splitting of the large-intensity (spin-down) peak is clearly visible, although one component of
the split peak is relatively small. This is just the component associated with the coupling of
the dot to the right electrode in the spin-up channel. Since this coupling is relatively small, the
corresponding intensity is also small. The second component, in turn, is much larger because
it is associated with the coupling to the left electrode in the spin-up channel, which is the
dominant coupling in the system considered. Splitting of the low-intensity (spin-up) peak is
not resolved. The intensity of the component associated with the coupling to the right electrode
in the spin-down channel practically vanishes because this coupling is negligible in the case
considered. For eV < 0 (positive bias), the situation is changed. Now the electrochemical
potential of the left electrode is independent of the bias. Consequently, the intensity of the
components whose position is independent of energy is significantly larger than the intensity of
the other components (the ones associated with the right electrode). As before, the component
associated with the coupling to the right electrode in the spin-down channel is not resolved.
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Figure 3. DOS for spin-up (thick lines) and spin-down (thin lines) electron states on the dot in
the parallel (left column) and antiparallel (right column) magnetic configurations, calculated for
three indicated voltages and for �L+/D = 0.28, �L−/D = 0.12, �R+/D = 0.04, �R−/D = 0.0002,
U/D = 500, (e2/CL)/D = (e2/CR)/D = 10. The other parameters are as in figure 1.

Consider now the antiparallel configuration (right column in figure 3), when the magnetic
moment of the right electrode is reversed. There is a nonzero spin splitting of the Kondo peak
at equilibrium, contrary to the case of symmetric coupling to the magnetic electrodes, where
the spin splitting in the antiparallel configuration vanishes [19]. Apart from this, the situation
is qualitatively similar to that for the parallel configuration. The main difference is that now the
bias-induced splitting of the large-intensity peak is not resolved, whereas the splitting of the
low-intensity peak is resolved.

As in the case of symmetrical coupling described above, the Kondo peaks in the DOS give
rise to anomalous behaviour of the corresponding transport characteristics. Due to the splitting
of the equilibrium Kondo peak, the anomaly in the DOS does not contribute to transport in the
small-bias regime. The Kondo peaks enter the ‘tunnelling window’ at a certain bias, which
leads to an enhanced conductance. Such an enhancement is clearly visible in the current–
voltage characteristics shown in figure 4 for both parallel (a) and antiparallel (b) configurations
(solid lines), where for negative values of eV the enhancement is quite significant, but it is
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Figure 4. Current–voltage characteristics in the parallel (a) and antiparallel (b) configurations,
calculated for the parameters as in figure 3. Current in the spin-down (spin-up) channel in the
parallel (antiparallel) configuration almost vanishes so the total current flows in the spin-up (spin-
down) channel (the curves presenting the total and spin-up (spin-down)) currents are not resolved.
The insets show the corresponding occupation numbers. The parameters as in figure 3.

less pronounced for eV > 0. This asymmetry is due to the difference in intensities of the
corresponding Kondo peaks that enter the ‘tunnelling window’.

The differential conductance in the Kondo regime is shown in figure 5 for parallel (a)
and antiparallel (b) magnetic configurations. In the parallel configuration the Kondo anomaly
occurs in the spin-up channel and for eV > 0 only. This may be easily understood by
considering the relevant DOS (see figure 3, left column). For eV > 0 only the Kondo peak
in the spin-up DOS can enter the tunnelling window created by the bias. For eV < 0, on the
other hand, the Kondo peak in the spin-down DOS can enter the tunnelling window. However,
the spin-down channel is almost nonconducting, so the corresponding peak in the differential
conductance is suppressed. In the antiparallel configuration the Kondo peak in differential
conductance occurs for eV < 0 only. This can be accounted for by taking into account the
behaviour of the Kondo peaks in the DOS shown in figure 3 (right column), and the fact that
now the spin-up channel is nonconducting. For eV > 0 only the Kondo peak in the spin-
up DOS can enter the tunnelling window, whereas for eV < 0 this is the Kondo peak in the
spin-down DOS (of large intensity).

The corresponding TMR is shown in figure 5(c). It is interesting to note that the TMR is
highly asymmetrical with respect to the bias reversal. It becomes positive for eV exceeding a
certain positive value, and negative below this voltage. This is a consequence of the fact that
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Figure 5. Bias dependence of the differential conductance in the parallel (a) and antiparallel
(b) configurations and the corresponding TMR (c), calculated for the same parameters as in figure 3.

for positive eV the Kondo peak in the differential conductance is clearly visible in the parallel
configuration (see figure 5(a)), whereas for eV < 0 the Kondo peak occurs in the antiparallel
configuration (see figure 5(b)). Such a behaviour of the conductance and also the TMR may be
interesting from the point of view of applications in mesoscopic diodes.

4.3. QD coupled to one ferromagnetic lead and one nonmagnetic lead

A specific example of asymmetric systems is the case where one electrode is ferromagnetic
(typical ferromagnetic 3d metal) whereas the second one is nonmagnetic. For numerical
calculations we assumed �L+/D = 0.12, �L−/D = 0.08 for the left (magnetic) electrode,
and �R+/D = �R−/D = 0.1 for the right (nonmagnetic) one, which corresponds to pL = 0.2,
pR = 0, and �L/D = �R/D = 0.1. As in the other asymmetrical situations studied in
this paper, the equilibrium Kondo peak in the DOS becomes spin-split. When a bias voltage
is applied, each component becomes additionally split, as shown in figure 6. Variation of
the spectra with bias voltage can be accounted for in a similar way as in the case of the dot
coupled asymmetrically to two ferromagnetic electrodes. The only difference is that now all
components of the peaks are clearly resolved. This is because all coupling constants are now
of comparable magnitude.

The corresponding differential conductance is shown in figure 7. Due to the spin splitting
of the Kondo peak in the DOS, the Kondo anomaly in the conductance becomes split as well, as
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Figure 6. DOS for spin-up (solid lines) and spin-down (dotted lines) electron states of the dot,
calculated for three different voltages, and for �L+/D = 0.12, �L−/D = 0.08, �R+/D = �R−/D =
0.1, U/D = 500, and (e2/CL)/D = (e2/CR)/D = 0.33. The other parameters are as in figure 1.

is clearly seen in figure 7. However, the splitting is asymmetric with respect to the bias reversal.
Thus, there is no need to have two ferromagnetic electrodes to observe splitting of the Kondo
anomaly, but it is sufficient when only one lead is ferromagnetic.

5. Summary and conclusions

In this paper we considered the Kondo problem in quantum dots coupled symmetrically and
asymmetrically to ferromagnetic leads. As a specific example of asymmetrical systems,
we considered the case when one electrode is ferromagnetic, whereas the second one is
nonmagnetic.

We showed that ferromagnetism of the leads gives rise to a splitting of the equilibrium
Kondo peak in the DOS for all asymmetrical situations. This generally takes place for
both magnetic configurations when the two electrodes are different. The splitting in both
configurations also occurs when both magnetic electrodes are of the same material, but the
corresponding coupling strengths to the dot are different. Indeed, such a splitting in parallel
and also antiparallel configurations was recently observed experimentally [25]. When similar
electrodes are symmetrically coupled to the dot, the splitting occurs only in the parallel
configuration. An interesting conclusion from the experimental point of view is that the
splitting also occurs in the case when one electrode is nonmagnetic.
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Figure 7. Bias dependence of the differential conductance, calculated for the parameters as in
figure 6.

The spin-splitting of DOS can lead to characteristic splitting of the zero-bias anomaly in
electrical conductance. This in turn can lead to a negative (inverse) TMR effect. In highly
asymmetrical systems the TMR can change sign when the bias voltage is reversed.
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